

Theory and Practice of Free-Electron Lasers

Particle Accelerator School Day 3

Dinh Nguyen, Steven Russell & Nathan Moody Los Alamos National Laboratory

LA-UR 09-03171

Course Content

Chapter 1. Introduction to Free-Electron Lasers Chapter 2. Basics of Relativistic Dynamics Chapter 3. One-dimensional Theory of FEL Chapter 4. Optical Architectures Chapter 5. Wigglers Chapter 6. RF Linear Accelerators Chapter 7. Electron Injectors

Wigglers

- Maxwell Equations
- Wiggler Designs
 - Pure Permanent Magnet
 - Hybrid
- Wiggler Natural Focusing
- Two-plane Focusing
 - Weak Focusing
 - Strong Focusing
- Tapered Wigglers

Maxwell Equations

LA-UR 09-03171

Physical Constants

Speed of light	С	2.9979 x 10 ⁸ m/s	$c = \sqrt{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{1$
Permeability of vacuum	μ_0	4π x 10 ⁻⁷ H/m	$\sqrt{\mu_0 \varepsilon_0}$
Permittivity of vacuum	\mathcal{E}_0	8.8542 x 10 ⁻¹² F/m	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$
Free space impedance	Z_0	376.73 Ω	$Z_0 = \sqrt{\frac{\mu_0}{2}} = c \mu_0 = \frac{1}{22}$
Electronic charge	е	1.6022 x 10 ⁻¹⁹ C	$\bigvee \mathcal{E}_0 \qquad \mathcal{C}\mathcal{E}_0$
Electron mass	$m_0^{}$	9.1094 x 10 ⁻³¹ kg	
Electron rest energy	$m_0 c^2$	0.511 MeV	$1 e^2$
Classical electron radius	r ₀	2.81794 x 10 ⁻¹⁵ m	$r_0 = \frac{1}{4\pi\varepsilon_0} \frac{1}{mc^2}$
Alfven current	I ₀	1.7 x 10 ⁴ A	$I_0 = \frac{ec}{r_0} = \frac{1}{4\pi\varepsilon_0} \frac{m_0 c^3}{e}$

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

Wiggler Designs

- Pure Permanent Magnet (PPM)
 - No power required
 - Highest magnetic field at very short wiggler periods
 - Can accommodate two-plane quadrupole focusing magnets
 - Susceptible to demagnetization
- Hybrid (Permanent Magnet + Iron or Vanadium Permendur)
 - No power required
 - Higher field if the gap-to-period ratio is less than 0.4
 - Magnetic field non-uniformity is reduced if ferromagnetic is saturated
 - Uses more magnet materials than PPM
 - Susceptible to demagnetization
- Electromagnets
 - No risk of demagnetization
 - Lower magnetic field at very short wiggler periods
 - Require external power sources and cooling

LA-UR 09-03171

Magnet Material Properties

- Rare-earth Magnets
 - SmCo₅
 - Sm₂Co₁₇
 - $Nd_2Fe_{14}B$
- Ferromagnetic Materials
 - Iron
 - Vanadium Permendur
- Room-temperature Electromagnets We will not consider
- Superconducting Electromagnets
 - NbTi
 - NbSn
 - YBCO

electromagnet wigglers here

LA-UR 09-03171

Magnetization Curves

Hysteresis curve starts from the origin and follows the dashed line to saturation (a). After the magnetizing force is removed, the curve moves to (b) and the magnets retains remanent field B_r . Reversing the magnetizing force causes the magnets to be demagnetized beginning at (c) in the 3rd quadrant (danger zone).

Permanent Magnet Materials

PM Material	(BH) _{max} (kJ/m³)	Remanence (mT)	B _r Temp Coefficient (% / K)	H _c Coercivity (kA/m)	H _{cB} Temp Coefficient (% / K)	Radiation Hardness
SmCo₅	170	800-1000	-0.042	2400	-0.25	High
Sm ₂ Co ₁₇	220	1000-1100	-0.032	2000	-0.19	Medium
NdFeB	300	1100-1400	-0.10	1400	-0.60	Low - Medium

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

Halbach PPM Wiggler Design

LA-UR 09-03171

Peak On-axis Magnetic Field

Peak on-axis magnetic field

$$B_0 = 2B_r f_M f_H e^{-\pi \frac{g}{\lambda_w}}$$

$$f_{M} = \frac{\sin\left(\pi \frac{l_{M}}{\lambda_{w}}\right)}{\left(\frac{\pi}{M}\right)}$$

$$f_H = 1 - e^{-\frac{2\pi h}{\lambda_w}}$$

- g: Full gap between magnet jaws
- B_r: Remanence (a material property)
- f_M: Magnet filling factor
- I_{M} : Length of individual magnet (along z)
- M: Number of magnets per period (one jaw)
- f_H: Magnet height factor
- h: Height of individual magnet (along y)

Optimized Halbach design

$$B_0 = 1.78B_r e^{-\frac{\pi \cdot g}{\lambda_w}}$$

LA-UR 09-03171

Hybrid Wiggler Designs

On-axis Field vs Gap-Period Ratio

Empirical formula for peak on-axis field

$$B_0 = ae^{-\frac{g}{\lambda_w}\left(b-c\left(\frac{g}{\lambda_w}\right)\right)}$$

	а	Q	С
SmCo	3.33T	5.47	1.8
NdFeB	3.69T	5.07	1.52

Hybrid wigglers are generally useful for maximizing on-axis field at small gap-to-period ratios. Hybrid wigglers also produce good field uniformity if the ferromagnetic material (iron or Vanadium Permendur) is saturated.

Planar Wiggler Magnetic Field

Planar wiggler with infinite x dimension

$$B_x = 0$$

$$B_y = \hat{y}B_0 \cosh(k_w y) \cos(k_w z)$$

$$B_z = -\hat{z}B_0 \sinh(k_w y) \sin(k_w z)$$

Lorentz force (written as second derivative with respect to z)

$$y'' = \left(\frac{e}{\gamma m_0 c^2}\right) \left(\upsilon_x B_z - \upsilon_z B_x\right)$$

Consider only the first term ($B_x = 0$).

$$y'' = \left(\frac{e}{\gamma m_0 c}\right) x' B_z$$

Using small $k_w y$ approximation

$$B_z \cong -B_0 k_w y \sin\left(k_w z\right)$$

Magnetic field in the y-z plane

Equation of motion in the y direction

$$y'' = -\left(\frac{k_w e B_0}{\gamma m_0 c}\right) x' \sin\left(k_w z\right) y$$

LA-UR 09-03171

Wiggler Natural Focusing

Expand B_v around y=0

$$B_{y} = B_{0} \left[1 + \left(k_{w} y \right)^{2} \right] \cos\left(k_{w} z \right)$$

Velocity in x with respect to z

$$x' = -\frac{e}{\gamma k_w m_0 c} B_0 \left[1 + \left(k_w y \right)^2 \right] \sin\left(k_w z \right)$$

Focusing force in the y direction $y'' = -\left(\frac{eB_0}{\gamma m_0 c}\right)^2 \left[1 + (k_w y)^2\right] \sin^2(k_w z) y$

Averaging rapid oscillations (twice the wiggler oscillation) yield the net focusing

$$y'' = -\left(\frac{k_w a_w}{\gamma}\right)^2 \left[1 + \left(k_w y\right)^2\right] y$$

LA-UR 09-03171

Vertical and Horizontal Motions

many wiggler periods due to gradient of B_y along the y direction. The field amplitude is proportional to the square of deviation from the center.

Vertical Envelope Equation

• Vertical envelope equation with emittance

$$\frac{d^2 R_y}{dz^2} + k_\beta^2 R_y = \left(\frac{\varepsilon_{ny}}{\gamma}\right)^2 \frac{1}{R_y^3}$$

• Find matched beam envelope radius by setting

$$\frac{{}^{2}R_{y}}{dz^{2}}$$
 to zerc

$$R_{y0}^{4} = \left(\frac{\varepsilon_{ny}}{\gamma k_{\beta}}\right)^{2}$$

 $k_{\beta} = \frac{k_{w}a_{w}}{\sqrt{2}\gamma}$

$$R_{y0} = \sqrt{\frac{\sqrt{2}\varepsilon_{ny}}{k_w a_w}}$$

Matched beam radius

If the focused electron beam is not the same as the matched beam radius, the y envelope will have betatron oscillations along the length of the wiggler.

Wiggler Focusing in a Planar Wiggler

Conventional planar wigglers focus the electron beam only in the y direction. A pair of quadrupoles is used to focus the beam in x and y.

The electron beam is matched into the wiggler with external focusing (by a pair of quadrupole magnets) to form an ellipse (the long axis in x) at the entrance. The matched beam is round only at the center of the wiggler.

LA-UR 09-03171

Two-plane Weak Focusing

Quadratic x² dependence

Approximate x^2 dependence of B_v at the center

3-20

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

Two-plane Focusing Wigglers

• Wiggler field in a two-plane focusing wiggler

$$B_{x} = \hat{x}B_{0}\frac{k_{x}}{k_{y}}\sinh(k_{x}x)\sinh(k_{y}y)\cos(k_{w}z)$$

$$B_{y} = \hat{y}B_{0}\cosh(k_{x}x)\cosh(k_{y}y)\cos(k_{w}z)$$

$$B_{z} = -\hat{z}B_{0}\frac{k_{w}}{k_{y}}\cosh(k_{x}x)\sinh(k_{y}y)\sin(k_{w}z)$$

• For small values of x and y (near center) expand *sinh* and *cosh* terms

$$B_{x} = \hat{y}B_{0}k_{x}^{2}xy\cos(k_{w}z)$$
$$B_{y} = \hat{y}B_{0}\left[1 + \frac{k_{x}^{2}x^{2}}{2} + \frac{k_{y}^{2}y^{2}}{2}\right]\cos(k_{w}z)$$

LA-UR 09-03171

Matched Beam Radius for Two-Plane Focusing Wigglers

Equations for x and y envelope radii in two-plane focusing wigglers

$$\frac{d^2 R_x}{dz^2} + k_x^2 R_x = \left(\frac{\varepsilon_{nx}}{\gamma}\right)^2 \frac{1}{R_x^3}$$

where

$$k_x^2 + k_y^2 = k_\beta^2$$

 $k_x = k_y = \frac{\kappa_\beta}{\sqrt{2}}$

Equal two-plane focusing

 $\frac{d^2 R_y}{dz^2} + k_y^2 R_y = \left(\frac{\varepsilon_{ny}}{\gamma}\right)^2 \frac{1}{R_y^3}$

$$R_{x0} = \sqrt{\frac{2\varepsilon_{nx}}{k_w a_w}} \qquad \qquad R_{y0} = \sqrt{\frac{2\varepsilon_{ny}}{k_w a_w}}$$

Focusing in y is distributed to focusing in x in natural focusing wigglers.

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM ny

Strong (Quadrupole) Focusing

Canted Pole Face

External Quadrupole Magnets

Strong two-plane focusing is used in most x-ray FEL to provide a smaller electron beam in the wiggler (higher gain). However, the longitudinal velocity is modulated by the transverse motion causing periodic dephasing of the FEL interaction.

Wiggler with FODO Focusing

Tapering

As the electron beam's energy changes along the wiggler, the resonance condition is shifted toward lower beam's energy. To maintain resonance, the wiggler period or a_w must be reduced. It is easier to change the wiggler gap g to change the wiggler parameter a_w and thus the resonance energy.

Resonance condition at z_0

$$\lambda = \frac{\lambda_w}{2\gamma^2} \left(1 + a_w^2 \right)$$

Resonance condition at $z_0 + \Delta z$

$$\lambda = \frac{\lambda_w}{2(\gamma - \Delta \gamma)^2} \left[1 + (a_w - \Delta a_w)^2 \right]$$

Rate of resonance energy change with respect to z

$$\frac{d}{dz}\gamma_R^2 = -k_w a_w a_s \left[JJ\right]\sin\phi_R$$

$$\frac{d}{dz}\left(\frac{\Delta\gamma}{\gamma}\right) = \frac{a_w^2}{1 + a_w^2} \frac{d}{dz}\left(\frac{\Delta a_w}{a_w}\right)$$

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

Different Tapering Methods

• Quadratic taper (black)

 $B_{w}(z) \approx B_{0} \left[1 - \left(\frac{z - z_{0}}{L_{w}}\right)^{2} \right]$

• Linear taper (red)

 $B_{w}(z) = B_{0}\left[1-s(z-z_{0})\right]$

- Inverse taper (green) $B_{w}(z) = B_{0} [1 + s(z - z_{0})]$
- Step taper (blue)

$$B_{w}(z) = B_{0}$$

$$B_{w}(z) = B_{1}$$

$$Z = 2_{0} \text{ to } z_{1}$$

$$Z = z_{0} \text{ to } z_{1}$$

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

3-26

Hamiltonian of Pendulum

Linear Tapered Wiggler

Tapered wiggler pendulum equation

untapered separatrix

$$\dot{\nu} = |a| \sin(\zeta + \phi_R) + \delta$$

Energy exchange amplitude

$$|a| = \frac{ka_s a_w}{\gamma^2}$$

π

New term in pendulum eq. = phase acceleration

Phase acceleration

$$\delta = \sin \phi_R = \frac{1}{k_w a_s a_w} \frac{d}{dz} \left(\frac{\Delta \gamma}{\gamma_R} \right)$$

LA-UR 09-03171

ν

 $-\pi$

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

 ϕ_R

ζ

Taper Rate & Trapping Fraction

Strong taper rate reduces the phase space area (and particle trapping fraction).

LA-UR 09-03171

University of New Mexico - Albuquerque NM

Tapered Wiggler Power Growth

Depending on the trapping fraction and taper length, tapering can increase the power by 2 - 5. The electron trapping fraction decreases with increasing resonant phase and becomes zero if resonant phase = π .

Courtesy of H. Freund

Chapter 6 RF Linear Accelerators

RF Linear Accelerators (Linac)

- Introduction to RF Linac
- Properties of RF Cavities
- Coupled Cavity Linac
- Superconducting RF Linac
- Energy Recovery Linac

Introduction to RF Linac

- Why RF linear accelerators?
- RF linac sub-systems
- Typical performance
- Design choices
 - Travelling-wave vs standing-wave cavities
 - Normal-conducting vs superconducting

RF Linac Pros and Cons

Pros

- Straight linear geometry \rightarrow No power loss due to synchrotron radiation
- Good beam emittance for short-wavelength FEL
- Can operate at high duty factor to produce high average current
- Can generate short electron bunches to produce high peak current

Cons

- Require complex phase and amplitude controls (Low-level RF)
- Large size
 - Normal-conducting RF: size is dominated by RF generators
 - Superconducting RF: size is dominated by helium cryoplants
- Long, skinny structures not suitable for small packaging

RF linac are the "tried and true" accelerators for short-wavelength FEL.

RF Linac FEL Sub-systems

The largest component of an RF linac FEL is the accelerator and its supporting sub-systems. The choice of RF linac determines the FEL performance.

Power Flow in an RF Linac FEL

Power is transferred from wall AC \rightarrow high voltage DC \rightarrow RF \rightarrow electron beams \rightarrow FEL. The wall-plug efficiency, without energy recovery, is the product of efficiencies of all the conversion steps. RF-linac driven FEL without energy recovery have wall-plug efficiency much less than 1%. What we gain is substantial increase in phase space density, i.e., number of photons divided by phase space volume (product of area, solid angle, time and bandwidth).

RF Linac Typical Parameters

Typical RF frequency Electron charge Electron peak current Electron average current Accelerating gradients Pulsed normal-conducting cw normal-conducting cw superconducting 325, 500, 805, 1300, 1500 & 2856 MHz 0.1 – 10 nC 1 – 100 A 1 μA – 10 mA 30 – 50 MV/m 2 MV/m

15 – 35 MV/m

Travelling vs Standing-wave

• In a travelling-wave linac, the RF wave travels from one end of the linac to the other end and into a match load at group velocity $v_g < c$. The phase velocity is slowed down (loaded) by irises to c ($v_p = c$). Electrons are injected at the peak of the RF and co-propagate with the wave in the linac.

Cavity fill time in TW cavity

$$t_{fill} = \frac{L_c}{\upsilon_g}$$

In a standing-wave linac, RF power is fed into all the cells at once but the cavity field builds up slowly over time due to the high Q of the cavity. Electrons are usually injected when the cavity power reaches steady state. The phase velocity is zero; however, as the wave reverses periodically, the particles are synchronous only at a few specific values of phase advance.

Cavity fill time in SW cavity

$$t_{fill} = \frac{2Q}{\omega}$$

Superconducting vs Normal-Conduting

Superconducting

- Niobium at 2K or 4.2K (helium BP)
- Elliptical cavities
- $R_s \sim 15 n\Omega$
- Unloaded Q ~ 2 x 10¹⁰
- RF consumption ~ 50 W/m
- Power to remove heat ~ 1 kW/W
- Electricity use ~ 50 kW/m
- Large aperture, small wake field

Normal-conducting

- Copper at room temperature
- Cavities with nose cones
- $R_s \sim 10 \text{ m}\Omega$
- Unloaded Q ~ 3×10^4
- RF consumption ~ 10 MW/m
- Power to remove heat ~ 1 W/W
- Electricity use ~ 10 MW/m
- Small aperture, large wake field

Properties of RF Cavities

- Wave Equations
- Waveguide Modes
- Cavity Modes
- Dispersion Diagram
- Stored Energy, Cavity Q and Losses
- Equivalent Circuits
- Shunt Impedance
- Transit Time
- Gradients, E_0T and ZT^2
- RF Coupling

Wave Equations

Faraday's law Ampere's law in vacuum (J = 0) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{B}}$ $\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$ Combine the above 1st–order equations to obtain 2nd–order equations $\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{B} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$ Wave equations in cylindrical coordinates $\left(\frac{\partial^2}{\partial z^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right) \left(\frac{\mathbf{E}}{\mathbf{B}}\right) = 0$

Boundary conditions for conducting surfaces: E_{\parallel} and B_{\perp} are zero E_{\perp} is proportional to surface charge density $\mathsf{B}_{\|}$ is proportional to current density

$$\mathbf{n} \times \mathbf{E} = 0 \qquad \mathbf{n} \cdot \mathbf{B} = 0$$
$$\mathbf{n} \cdot \mathbf{E} = \frac{\Sigma}{\varepsilon_0} \qquad \mathbf{n} \times \mathbf{B} = \mu$$

 $\mu_0 \mathbf{K}$

LA-UR 09-03171

Waveguide Modes

TEM (transverse electric and magnetic) modes have no axial field. TEM modes in coaxial transmission lines are used for power transmission at low frequencies. TEM modes are also used for acceleration in $\lambda/2$ and $\lambda/4$ cavities.

TM (transverse magnetic) modes have axial electric field. The lowest TM mode of a pillbox cavity, TM_{010} mode, is used for particle acceleration.

TE (transverse electric) modes have axial magnetic field. The lowest mode in rectangular waveguides, TE_{10} mode, is used for RF power transmission. The width of a rectangular waveguide is one-half the cut-off wavelength.

Waves in Cylindrical Waveguide

Choose solution of the form $E_z(r, z, t) = E_0 \mathbf{R}(r)e^{ikz}e^{-i\omega t}$

Wave equation becomes Bessel differential equation

Κ²

$$\frac{\partial^2 R}{\partial r^2} + \frac{1}{r} \frac{\partial R}{\partial r} + \left(\frac{\omega^2}{c^2} - k^2\right) R = 0$$

For negative value of K², the waves cannot propagate (cut off). The cut-off wavenumber is

$$k_c = \frac{2.405}{a}$$

a

For positive values of K², solutions exist in the form of J_m (electric field) and J'_m (magnetic field) Bessel functions. The zeros of the Bessel functions correspond to solutions of the above differential equation.

$$E_{z}(r,\phi,t) = E_{0}J_{m}(k_{mn}r)\cos\left(m\phi\right)e^{i\omega t}$$
$$B_{\phi}(r,z,t) = -iB_{0}J'_{m}(k_{mn}r)\cos\left(m\phi\right)e^{i\omega t}$$

LA-UR 09-03171

TM Modes in Cylindrical Waveguides

LA-UR 09-03171

University of New Mexico - Albuquerque NM

Dispersion Diagram for Unloaded Waveguides

Phase velocity of EM wave is faster than the speed of light in uniform waveguides. Electrons see a time-varying electric field that averages to 0 (no net acceleration).

Dispersion Diagram for Periodically Loaded Waveguides

The RF phase velocity is reduced by "loading" the structure with periodic structures. The dispersion curve intercepts the light line at the synchronous phase advance. For travelling wave cavities, the typical phase advance is $2\pi/3$. The most common phase advance for standing wave cavities is π .

LA-UR 09-03171

Pillbox Cavity

TM₀₁₀ is the accelerating cavity mode. The 3rd index refers to number of half-period variations in the z direction. The resonance frequency of a pillbox is inversely proportional to its radius. The cell length is typically one-half the RF wavelength. Electrons enter and exit the cell at zero field and see maximum field in the center.

TM₀₁₀ Mode

LA-UR 09-03171

Surface Resistance

For normal conductors, resistance is caused by collisions with impurities, lattice defects, or ions due to their thermal motions. Superconductors have two components to surface resistance: BCS resistance and residual resistance.

RT copper at 1.3 GHz σ = 5.8 x 107 A/(V-m) δ = 1.7 μ R_s = 10 m Ω 2K niobium at 1.3 GHz R_{BCS} = 7 n Ω R_{res} = 8 n Ω R_s = 15 n Ω

Stored Energy, Loss and Cavity Q

Stored energy

$$U = \frac{\mu_0}{2} \int \left| \mathbf{H} \right|^2 dV$$

Ohmic loss

$$P_l = \frac{R_s}{2} \int \left| \mathbf{H} \right|^2 dS$$

Cavity unloaded Q is the ratio of stored energy to power loss per cycle. Cavity Q is a function of both geometry and material (surface resistance). The geometric factor G is measured in ohm. For a given G, the lower the surface resistance, the higher the cavity Q.

$$Q_0 = \frac{\omega_0 U}{P_l} = \frac{\omega_0 \mu_0}{R_s} \frac{\int \left|\mathbf{H}\right|^2 dV}{\int \left|\mathbf{H}\right|^2 dS}$$

$$Q_0 = \frac{Z_0 f_{geometry}}{R_S}$$

 ω_0

 $\approx a \approx$

 $Z_0 = 377 \Omega$

Geometric factor
$$G = Q_0 R_s$$

Geometric factor depends only on cavity shape, and is independent of material, size or frequency. Typical G is about 270 Ω (the higher the better).

Surface

Volui

Lumped Circuit of an RF Cavity

Stored energy

$$U = \frac{1}{2}CV_{c}^{2} = \frac{1}{2}LI^{2}$$

Power loss per cycle

$$P_c = \frac{V_c^2}{2R} = \frac{I^2 R}{2}$$

Resonance frequency

Cavity unloaded Q

The cavity resonance frequency can be changed by adjusting its inductance or capacitance. Cavity inductance depends on the magnetic volume in the cavity. Capacitance depends on the spacing between the nose cones at the beam apertures. The unloaded Q scales linearly with shunt impedance, and inversely with surface resistance.

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

LA-UR 09-03171

 V_c

R

Shunt Impedance

Shunt impedance is a measure of how efficiently a cavity utilizes RF power toward accelerating the beam. The larger the shunt impedance, the higher the gradient at a fixed ohmic loss (or the lower ohmic loss for a given gradient). Shunt impedance per unit length (M Ω /m) is equal to the square of gradient (MV/m) divided by the ohmic loss (MW).

Shunt impedance per unit structure length

Transit-time corrected shunt impedance

$$ZT^2 = \frac{\left(E_0 T\right)^2 L}{P_c}$$

We can also calculate the RF power usage from the beam energy and accelerator length

For copper linac, the shunt impedance per unit length depends on square root of frequency

$$ZT^{2} = \left(1.28 \frac{M\Omega}{m}\right) \sqrt{\frac{f}{MHz}}$$

LA-UR 09-03171

R/Q

R/Q is a frequency- and material-independent geometric factor

Pillbox TM₀₁₀ R/Q = 196 Ω

Elliptical TM₀₁₀ R/Q ~ 120 Ω

For the fundamental TM_{010} mode, large R/Q is good (low RF consumption for the same material). One can increase R/Q by changing the cavity from pillbox shape to re-entrant shape.

Coupled Cavity Linac (CCL)

Cell-to-Cell Coupling

Electrically coupled cavities

Coupled cavity linac is characterized by the phase advance from cell to cell. Typical phase advances for standing wave cavities are 0, $\pi/2$ and π . The 0 mode has the highest frequency in magnetically coupled CCL while the π mode has the highest frequency in electrically coupled CCL.

Dispersion Diagram for CCL

Frequency of CCL modes

$$\omega = \frac{2.405c}{a} \left[1 + \frac{\kappa}{2} \left(1 + \cos \psi \right) \right]$$

 κ = cell-to-cell coupling ψ = phase advance

Dispersion diagram for CCL plots the mode frequency as a function of phase advance. For this CCL, the π mode is separated from the next mode by δf . To avoid field distortion due to mixing of nearby modes, the mode separation δf must be large compared to the bandwidth of the RF source.

Frequency separation between adjacent modes

$$\frac{\delta f}{f_0} \approx \frac{\kappa}{n}$$

Strong cell-to-cell coupling (large κ) means large frequency separation between modes, hence stable operation.

Transit Time

Transit time factor is defined as the ratio of voltage gain of an RF cavity relative to a DC cavity. Transit time factor is due to the sinusoidal variation of electric field during the electron transit through the cavity. To increase the transit time factor, one has to decrease the gap d between the cavity walls. This is often done by adding nose cones to NCRF cavities.

3 - 57

LA-UR 09-03171

Energy Gain

The energy gain for the electrons in a TM_{010} electric field depends on the injection phase, defined such that $\phi = 0$ corresponds to maximum accelerating field (on crest).

Energy gain for particles with phase ϕ

$$\Delta W = -e \int_{-L/2}^{L/2} E_0 \cos(\omega t + \phi) dz$$

$$\Delta W = -e \int_{-\frac{L}{2}}^{\frac{L}{2}} E_0 \left[\cos\left(\frac{\omega z}{\upsilon}\right) \cos\phi - \sin\left(\frac{\omega z}{\upsilon}\right) \sin\phi \right] dz$$

The second term is an odd function of z, so it integrates to zero. The first term integrates to

$$\Delta W = -eE_0L\frac{\sin\left(\frac{\omega L}{2\nu}\right)}{\left(\frac{\omega L}{2\nu}\right)}\cos\phi$$

Panofsky equation (for electrons) $\Delta W = -eE_0TL\cos\phi$

 E_0T is the effective accelerator gradient, E_{acc}

Transit time factor

US Particle Accelerator School 2009 University of New Mexico - Albuquergue NM

3-58

Accelerating Gradients

- Spatial average axial electric field: E₀
- $\mathbf{E} = E_0 e^{i\omega t + \vartheta_0}$

 $E_{acc} = E_0 T$

- Average structure accelerating gradient, E_{acc}
- Packing factor: length of active structure/total length
- Real-estate gradient

$$E_{real} = E_{acc} f_p$$

$$f_p = \frac{L_{acc}}{L_{total}}$$

For pulsed NCRF cavities at 3 GHz, the peak on-axis accelerating gradient is typically 50 MV/m. The average (transit time = 0.7) gradient is about 30 MV/m. Typical packing factor is 0.7 so real-estate gradient is \sim 20 MV/m.

For cw SRF cavities at 1.3 GHz, peak on-axis accelerating gradient is about 35 MV/m. The average (transit-time corrected) gradient is ~ 20 MV/m. Typical packing factor is 0.5, so the real-estate gradient is about 10 MV/m.

Power Loss per Cavity

Normal-conducting Pillbox

• Surface resistance

$$R_{s} = 10m\Omega \sqrt{\frac{f}{1.5GHz}}$$

- G (= QR_s) is 257 Ω
- Q₀ ~ 25,000
- R/Q is ~200 Ω
- r ~ 50 MΩ/m
- P_c at 1 MV/m is 20 kW/m

Superconducting Elliptical

• Surface resistance

$$R_{s} = 8n\Omega + 10n\Omega \left(\frac{f}{1.5GHz}\right)^{2}$$

- G (= QR_s) is about 270 Ω
- Q₀ ~ 2 x 10¹⁰
- R/Q is about 120 Ω
- r/Q ~ 600 Ω/m
- P_c at 1 MV/cell is ~10 W/m

RF Coupling

The microwave generator is typically connected to a circulator (not shown) and rectangular waveguides that transfer RF power to the cavity via a power coupler. A power coupler is used to match the waveguide impedance into the cavity impedance. If the impedance is not matched, RF power will be reflected back to the circulator. The circulator then directs the reflected power to a matched load (protecting the generator from seeing the reflected power).

External Q

3-62

Coupling Beta with No Beam

Coupling
$$\beta$$
 $\beta = \frac{P_{ext}}{P_c} = \frac{Q_0}{Q_{ext}}$

- $\beta < 1$ Undercoupled
- $\beta = 1$ Critically coupled
- $\beta > 1$ Overcoupled
- Reflected power

$$P_{-} = \left|\frac{\beta - 1}{\beta + 1}\right|^2 P_{+}$$

Cavity power

Reflected power is zero at β =1 (critical coupling) Max. cavity power at β =1 is equal to forward power.

Lumped Circuit of Cavity with Beam

Voltage Phasor Diagram

Coupling Beta with Beam Loading

Matched coupling beta

$$\beta_0 = 1 + \frac{P_b}{P_c}$$

Loaded Q

$$Q_{L} = \frac{Q_{0}}{1 + \beta_{0}}$$

Total power

$$P_{gen} = P_c + P_b + P_{ref}$$

Reflected power

$$P_{-} = \left| \frac{\beta - \beta_{0}}{\beta + \beta_{0}} \right|^{2} P_{+}$$

Reflected power is minimized by "matching" the coupling beta to the cavity coupling with beam. Note the cavity is "matched" only at one beam power (beam current).

Heavy Beam-Load Phasor Diagram

References

Books

Science and Technology of Undulators and Wigglers

RF Linear Accelerators

RF Superconductivity for Accelerators

J.A. Clark

T.P. Wangler

H. Padamsee

URL

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-8026.pdf

http://srf2003.desy.de/talks/Knobloch/Knobloch_tutorial_srf_2003.pdf

http://en.wikipedia.org/wiki/Superconducting Radio Frequency

